
	

	

Final Report	
Electrical Brain Surgeons	

	

	

	

	

	

Joshua Sy	

Jose Perrone	

Steven Waller	

Jean-Pierre Vertil	

Andre Bermudez-Perez	
	

	

	

	

April 29, 2016	

EE 41440	

	

	 1	

Table of Contents	
	

	

Introduction	...	2	

Detailed System Requirements	..	5	

Detailed Project Description	..	7	

System Integration Testing	..	15	

User Manual/Installation	...	17	

To-Market Design Changes	...	19	

Conclusions	...	20	

Appendices	..	21	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 2	

Introduction	
Problem & Solution	

 Smart grids are electrical grid networks designed to provide energy in a

reliable and efficient way. Smart grid networks are considered the wave of the

future due to their reliability, but there are still some challenges that tend to impede

their widespread adoption. One of the biggest challenges is determining how to

correct the power factor for better energy flow in complex smart grid systems.

Often times in complex grid systems it is hard to monitor and thus improve upon

the efficiency of the grid. The purpose of the project was to develop a solution to

this challenge by creating a device that measures power and power factor at a node

in a smart grid network and make this information available via the Internet

through the wireless transfer of incoming data. This will enhance the process of

pinpointing exactly where improvements in the network need to be made. For

example, if the measured power factor is below 1, a capacitive load needs to be

added to the system to balance out the effects of the inductive reactance at the

node. Vice versa, if the power factor is above 1 an inductive load needs to be

added to balance out the effects of the capacitive reactance at the node.	

	

	

	 3	

Outcome	

 While the team was able to successfully demonstrate power measurements

and send this information to a broker via wifi - with the use of the ESP8266 Dev

Thing as a master device and an MCP39F521 Demo Board for 1 phase- we were

unable to get readings with our final board that incorporates 3 MCP39F521 chips

(slave device) and a ESP12 (master device that functions similarly to the ESP8266

Dev 	

Figure 1 - Hardware of Power Monitor System combining the ESP8266 Dev

Thing and the MCP39F521 Demo Board	

	

	 4	

 While we could not get readings from our designed board, it properly

distributes voltage and the ESP12 is programmable and performs well if it does not

need to interact with the MCP chips.	

Possible Sources of Error 	

We were able to verify that all the MCP chips were powered properly. In

order to verify if the I2C communication was taking place properly, we looked at

the Clock and Data signal with the use of a logic analyzer. As seen in Figure 2, the

logic analyzer suggests that there was no proper I2C communication. The pattern

seen in the figure is infinitely repetitive. 	

Figure 2- Logic Analyzer Output of non-functioning Board	

As were were able to verify the functioning of the code with the

MCP39F521 Demo Board, the issue must be at the hardware level and is likely due

to a shortening of some wires or pins during the soldering of the board. 	

	

 	

	

	 5	

Detailed System Requirements	
	

In order to achieve the desired solution, the system must be able to read in

voltage, current, and power factor from a node on the grid. Therefore, a printed

circuit board with schematics for a voltage reading system, a current reading

system, and power factor computing is required along with three MCP chips and

the ESP8266. Three MCP’s are needed to measure three phase power. 	

The system behaves as seen in the flowchart displayed in Figure 3. In

essence, current and voltage values are inputted for 3 different phases, the signals

are read, digitalized and published to a broker via WiFi. 	

Powering 	

 The board is powered with the use of a DC wall wart not exceeding 7V DC.

This fed voltage goes through a voltage regulator that outputs 3.3 V to the rest of

the board. 	

	

	 6	

	

Figure 3- System Flowchart 	

	

Start	

Input 3 Phase
Voltage &
Current 	

MCPs compute and
digitalize 3 phase
voltage, current &

Power Factor 	

3 Phase Power
Values 	

Wi-Fi Transmission 	

Display 3 Phase
Values	

	

	 7	

Voltage Measurement: 	

Considering the fact that we are dealing with a 3-phase power system, each voltage

phase is brought to an individual MCP chip. A common neutral line is also

inputted into the MCP which does the measurement. 	

Current Measurement: 	

Current is measured through the use of a current sensing transducer. The current

transducer generates a voltage which is sent to the MCP for appropriate current

measurement. 	

Power Factor Measurement: 	

Through inputs of voltage and current as previously described, the MCP chips

calculates the power factor for each of the three phases. 	

Wireless Component:	

The current, voltage, and power factor measurements must be transmitted to a

server via Wi-Fi. 	

Detailed Project Description	
	

System Theory of Operation:	

	

	 8	

 The overall system works as following: The system will test any node on a

smart grid by measuring 3 phase power factor, voltage, and current at the

corresponding node. The values will be continuously read in and transmitted to a

server via Wi-Fi to determine inefficiencies on the grid network. 	

System Block Diagram:	

The overall system consists of two subsystems that work together to achieve

the proposed solution (See Figure 4) . The first subsystem reads voltage, current

and power factor. The second subsystem is the Wi-Fi system. The two subsystems

communicate to each other via I2C. 	

	

	 9	

	

Figure 4- System Block Diagram	

	

	

	

	

	 10	

The MCP39F521 Power Demonstration Board is a device that measures

voltage, current and power factor at a node. The schematics from the MCP device

are replicated on the printed circuit board (see Figure 5 of the Appendix) and

three MCP chips will be placed in the corresponding positions on the board. 	

Note that the Event and Zero Crossing detector circuits seen in Figure 5

(Appendix) were omitted on our design and they are not necessary for our

purposes. We also simplified the power input on the board. Instead of transforming

the input voltage being measured from AC to DC, we have a wallwart connection

to feed the DC components of the board and input the AC input voltage for the sole

purpose of being measured (see Figure 6 in the Appendix). 	

Subsystem 1 consists of the voltage, current and power factor measuring

system. The MCP will effectively measure these three parameters. A current

transducer sensor is placed around a wire at the test node. Using the two ends of

the current sensor, a voltage will be passed across a burden resistor and through the

MCP to measure current. Figure 7 (Appendix) shows the current measuring

schematic. Note that we changed the displayed burden resistor with a 27 Ohm

resistor, determined in the following manner: Burden Resistor (ohms) = (Reference

Voltage * # of turns in the current sensor) / (2√2 * max primary current) = 29.17.

The reference voltage is 3.3 volts and there are 3000 turns in the current sensor.

We used 27 because it is the closest common resistor value to 29.17. The max

	

	 11	

primary current is determined by the current range of the sensor, which is 0-120A.

Therefore, the max primary current is 120 A.	

 An ESP8266 module is used to connect our second subsystem to the MQTT

broker, which will subscribe/publish the data. The broker subscribes to three

topics: Voltage, Current, and Power Factor. Figure 4 shows a flowchart of the

entire system. The two subsystems will communicate using an I2C interface.	

Subsystem 1 (Hardware) 	

Subsystem 1 must be able to measure voltage, current and power factor at any node

on a smart grid network. Figure 8 (Appendix) shows a schematic of the voltage

reading system of the MCP. Subsystem 1 will use the MCP39F521 device to

measure the voltage and power factor at a node on a smart grid and read in the

voltage from the device with the microcontroller using the I2C interface. The

necessary components are the MCP chips, the implementing voltage reading

schematic on the printed circuit board, and the proper I2C interface. The I2C

interface allows the ESP device, which transmits data over a wireless network, to

communicate and receive readings from the MCP chips. Figure 4 shows a

flowchart of subsystem 1.	

	

	 12	

Note that Subsystem the current measurement whose MCP current channel

schematic is depicted in Figure 7 is implemented on the printed circuit board with

the difference that the printed board uses a current coil. 	

The current measuring component will:	

● Place a current sensing coil around a load wire at the test node	

● Run the current across a burden resistor	

Components:	

● Current Sensor.	

● Resistors for the voltage divider.	

Wifi Component	

Subsystem 2 (Hardware) 	

The Wifi subsystem will:	

● Collect the data from the measurements on the microcontroller	

● Use the ESP8266 device to transmit the data to a web server	

Component: 	

● ESP12	

Subsystem 1 & 2 (Software) 	

	

	 13	

 While the MCP chips offer calibration options through the Microchip Power

Monitor software, they are not programmable per se as they do not require code to

change their behavior. 	

 This being said, an arduino code was written to gather the power information

read by the MCP chips and communicate this information with the ESP12 before

being transmitted via WiFi. 	

 The code that enables the interaction between the two subsystems is

generated as seen in the Program Flow Chart displayed in Figure 9. For

simplification and practicality purposes, the program is broken down into multiple

functions. A full listing of the code is available in the Appendix with extensive

comments (in blue) for guidance. 	

*In order to use the WiFi functions of the ESP12, the PubSubClient.h and the

ESP8266WiFi.h libraries had to be included in the program. In order to enable the

I2C communication between the ESP12 and the MCP chips, the Wire.h library had

to be included in the library. 	

	

	 14	

	

	

Figure 9- Program Flow Chart 	

Initialize ESP12-
Setup baud-rate-

9600	
Serial.begin(9600);	

Setup I2C capability	
Wire.begin()	

Setup Wifi capability	
setup_wifi	

Enter Loop of I2C and
WiFi exchanges calling
the following functions: 	

voltage_read(); 	
current_read(); 	

powerFactor_read(); 	
pubMQTT(); 	

Go to the next Phase	
Select Appropriate Slave	

	

	 15	

System Integration Testing	
 Each subsystem was separately tested, then the full system was tested as a

whole. In order to test the first subsystem of voltage, current and power factor

readings, we communicated with MCP chips via I2C and used a logic analyzer to

make sure that the proper bytes were being returned and that the acknowledges

were being set appropriately. 	

 In order to make sure that the values returned on the I2C channel were

correct, we also tested the first subsystem with the Microchip Power Monitor

software that is meant to display the readings in question. We were also able to

verify the current and voltage readings by measuring the voltage and current in

question with the help of a multimeter. 	

 The second subsystem- wiFi- was tested by sending a known variable with

expected updates to the broker. The values were displayed as expected. 	

 Finally, when assembled as one system, we were able to confirm that the

readings from the Arduino serial monitor were the same appearing on the online

broker as seen in Figure 10. 	

	

	 16	

	

Figure 10- Proper Readings Displayed on the MQTT Broker	

 Recall that the right readings were only possible on the demo-board as our

printed board is not functioning properly. As mentioned earlier, the I2C channels

of the printed board were monitored but the readings were not detected. We also

made sure that there was not short between Vdd and GND in the different locations

where Vdd could be tested. 	

	

	 17	

User Manual/Installation	
 The final product can be seen in Figure 11. It is equipped with a
programmer that enables the user to do the following: 	

● Enter the name and password to a local SSID.
● Modify the time interval at which the power information are being read from

the appropriate MCP registers.
● Modify the time interval at which the power information is being sent to the

broker.
● Choose which phase to be monitored.
● Choose which power information to be measured and displayed.

	

Figure 11 - Final Power Monitor Product

	

	

	 18	

	 The device is also equipped with 3 current transducers for the current

measurements. 1 Transducer is displayed in Figure 11 above. In order to properly

connect the device at a particular node, the following banana plug connections

must be done:

● Refer to Figure 11.

● Note that each phase is represented by a different color. E.g.:

○ Phase A: Red

○ Phase B: Yellow

○ Phase C: Brown

● The top banana plug in each phase is a voltage input.

● The bottom 2 banana plugs in each phase are for the current transducer out.

● The white banana plug is for the neutral line of the 3 phase voltage system.

 Also note that the device must be powered by a DC wallwart made visible in

Figure 12. The power supplied must not exceed 7V DC. 	

 In order to verify that the Wifi reading are being displayed properly, the user

is recommended to double check the readings on the broker with those on the serial

monitor of Arduino. A simple check for the right output of power is to plug in a

light bulb, a purely resistive load, which should have a known power factor of 1.

The input voltage will be 120 V if plugged into a wall. 	

	

	 19	

	

Figure 12- Wall wart connector	

	

	

	

To-Market Design Changes	
	

 Because only a functional prototype has been created for this project, some

changes need to be implemented before the device can be sold commercially. The

	

	 20	

package size needs to be reduced, and should be fully closed- as of now the side on

which the power in inputted is open. 	

 In terms of the software, the delay times must be adjusted so that the

readings from each register is appropriately stored. As of now, sometimes the

output return a “0” as some readings are not appropriately stored. 	

 For greater safety, there should also be an on-off switch to power the board.

As of now, in order to stop powering the board, the wall wart must be disconnected

altogether. Also for safety, the banana plug metal that go into the board should not

be exposed to avoid any potential short. 	

	

Conclusions
	

 Although the final product was not able to perform as expected, we were

able to monitor power measurements (voltage, current and power factor) for single

phase loads using the demo boards. This being said, the team has learned much

about the programming of microcontrollers, the implementation of I2C

communication, the implementation of Wi-Fi communication, the design and

assembly of electronic boards and power monitoring. 	

 	

	

	 21	

Appendices	
	

Figure 5- MCP Schematic	

Figure 8- Voltage Channel Schematic	

	

	

	

	 22	

Figure 7- Current Channel Schematic	

	

 Hardware Schematics 	

	

Figure 13- Full Eagle Schematic

	

	 23	

	

Figure 14- ESP12 Eagle Schematic 	

	

Figure 6- MCP Slave 1 Eagle Schematic 	

	

	 24	

	

Figure 15- MCP Slave 2 Eagle Schematic 	

	

Figure 16- MCP Slave 3 Eagle Schematic 	

	

	 25	

	

	

Figure 17- Full Eagle Board	

	

	 26	

Code Full Listing with Extensive Comments 	

Begin by including the appropriate libraries and global variables. 	

#include	<PubSubClient.h>	(This	library	is	needed	for	the	WiFi	capability)	

#include	<ESP8266WiFi.h>	(This	library	is	also	need	for	the	WiFi	capability)	

#include	<Wire.h>	(This	library	is	needed	for	I2C	communication)		

#define	ADDRESS1	0x74		(Address	of	first	slave	device)	

#define	ADDRESS2	0x75		(Address	of	second	slave	device)	

#define	ADDRESS3	0x76		(Address	of	third	slave	device)		

#define	wifi_ssid	"ND-guest"	

#define	mqtt_server	"senior-mqtt.esc.nd.edu"	

	

WiFiClient	espClient;	(This	function	establishes	the	ESP12	as	a	client)		

PubSubClient	client(espClient);	

//---	

	

void	InsertProtocol(byte	registerAddress,	byte	checksum)	(This	function	is	a	protocol	that	needs	
to	be	sent	to	the	MCP	devices	to	indicate	that	the	ESP12	master	device	will	read	from	them)		

{	

		Wire.beginTransmission(ADDRESS);		

		Wire.write(0XA5);														//165		(Header	Byte)		

		Wire.write(0x08);														//8		(Number	of	Bytes	in	Frame)		

		Wire.write(0x41);														//65	(Command	-Set	Address	Pointer)		

		Wire.write(0x00);														//0		(Address	High)		

		Wire.write(registerAddress);		(Address	Low)		

		Wire.write(0x4E);														//78		(Command-	Register	Read,	N	bytes)		

		Wire.write(0x20);														//32		(Number	of	Bytes	to	Read)		

		Wire.write(checksum);		(Checksum)		

		Wire.endTransmission();		

	

	 27	

}	

	

//---	

double	MultiplicationCombine(unsigned	int	x_high,	unsigned	int	x_low)	(This	function	
concatenates	2	bytes	into	1	double	value)	

{	

		int	combined;	

		combined	=	x_high;	

		combined	=	combined*256;		

		combined	|=	x_low;	

		return	combined;	

}	

	

//---	

float	voltage_read(byte	slaveAddress)	(This	function	reads	voltage	from	a	particular	slave	MCP-	
note	that	the	MCP	address	is	one	of	its	inputs.	The	current	and	power	factor	functions	are	
similar	and	will	thus	have	fewer	comments)		

{	

		InsertProtocol(slaveAddress,	0x06,	0x62);		(to	input	the	right	protocol,	indicate	the	
appropriate	slave	address,	register	address	and	checksum).		

		delay(1);		

(Now	store	each	byte	being	read	into	an	array	initially	populated	by	0s).		

		byte	c[35]	=	{0};		

			Wire.beginTransmission(ADDRESS);	

			Wire.requestFrom(ADDRESS,35);	

						for	(int	i=1;	i<36;	i++)	

						{	

								if	(Wire.available())	

								{	

											c[i]	=	Wire.read();		

	

	 28	

								}	

						}	

						/*		for	(int	j=1;	j<35;	j++)		

						{	

								Serial.println(c[j],	HEX);	//	print	byte		(For	debugging	purposes)		

						}		*/	

					byte	holder4	=	c[4];	(Note	that	the	fourth	and	third	bytes	read	store	the	actual	value	
wanted.	The	first	returned	by	is	an	acknowledge	and	the	second	is	the	number	of	bytes	in	the	
frame.	Refer	to	the	MCP39F521	spec	sheet.)	

					byte	holder3	=	c[3];		

					double	voltageRaw	=	MultiplicationCombine(holder4,	holder3);	(This	function	converts	the	
bytes	read	into	decimal	values)	

					double	voltage	=	voltageRaw/10;	(The	decimal	value	read	is	a	factor	of	10	greater	than	the	
actual	value-	Refer	to	the	MCP39F521	spec	sheet).		

					Serial.print("Voltage	=	");		

					Serial.print(voltage);		

					Serial.print("	v");		

					Serial.println("	");		

					Wire.endTransmission();		

					return	voltage;		

}	

	

//---	

(This	function	reads	current	from	a	particular	slave	MCP-	note	that	the	MCP	address	is	one	of	
its	inputs)		

	

float	current_read(byte	slaveAddress)	

{	

		InsertProtocol(slaveAddress,	0x0E,	0x6A);		

		delay(1);		

	

	 29	

		byte	d[35]	=	{0};		

			Wire.beginTransmission(ADDRESS);		

					

	

			Wire.requestFrom(ADDRESS,35);	

						for	(int	i=1;	i<36;	i++)	

						{	

								if	(Wire.available())	

								{	

											d[i]	=	Wire.read();		

								}	

						}	

						/*	for	(int	j=1;	j<35;	j++)		

						{	

								Serial.println(d[j],	HEX);	//	print	bytes	(for	debugging	purposes)		

									

						}			*/	

					byte	holder4	=	d[4];		

					byte	holder3	=	d[3];		

					double	currentRaw	=	MultiplicationCombine(holder4,	holder3);		

					float	current	=	currentRaw/10000;	(The	decimal	value	read	is	10000	times	greater	than	the	
actual	value-	Refer	to	the	MCP39F521	spec	sheet).		

	

	

						Serial.print("Current	=	");		

					Serial.print(current);		

					Serial.print("	A");		

					Serial.println("	");	

					Wire.endTransmission();	

	

	 30	

					return	current;		

}	

	

//---	

(This	function	reads	power	factor	from	a	particular	slave	MCP-	note	that	the	MCP	address	is	
one	of	its	inputs)		

	

float	powerFactor_read(byte	slaveAddress)	

{	

		InsertProtocol(slaveAddress,	0x0C,	0x68);		

		delay(1);		

		byte	c[35]	=	{0};		

			Wire.beginTransmission(ADDRESS);		

				Wire.requestFrom(ADDRESS,35);	

						for	(int	i=1;	i<36;	i++)	

						{	

								if	(Wire.available())	

								{	

											c[i]	=	Wire.read();		

								}	

						}	

				/*		for	(int	j=1;	j<35;	j++)		

						{	

								Serial.println(c[j],	HEX);	//	print	bytes	(for	debugging	purposes)		

														}												*/	

					byte	holder4	=	c[4];		

					byte	holder3	=	c[3];		

					double	powerFactorRaw	=	MultiplicationCombine(holder4,	holder3);		

					double	powerFactor	=	0;		

	

	 31	

					if	(powerFactorRaw	<=	32767)	

					{	

						powerFactor	=	powerFactorRaw/32767;	(Convertion	scheme	as	required	by	the	MCP39F521	
spec	sheet).		

					}		

					else	if	(powerFactorRaw	>	32767)		

					{	

						powerFactor	=	(powerFactorRaw	-	65535)/32767;		

					}		

					Serial.print("Power	Factor	=	");		

					Serial.print(powerFactor);		

					Serial.println("	");		

					Wire.endTransmission();		

					return	powerFactor;		

	

}	

	

//---	

This	function	sets	up	the	WiFi	capability	

		void	setup_wifi()	{	

				delay(10);	

				//	We	start	by	connecting	to	a	WiFi	network	

				Serial.println();	

				Serial.print("Connecting	to	");	

				Serial.println(wifi_ssid);	

		//		WiFi.begin(wifi_ssid,	wifi_password);	

				WiFi.begin(wifi_ssid);	

				while	(WiFi.status()	!=	WL_CONNECTED)	{	

								delay(500);	

	

	 32	

								Serial.print(".");	

				}	

				Serial.println("");	

				Serial.println("WiFi	connected");	

				Serial.println("IP	address:	");	

				Serial.println(WiFi.localIP());	

}	

	

//---	

void	setup()	{		(This	function	initializes	the	ESP12,	sets	up	the	baud	rate,	sets	up	the	I2C	and	
WiFi	capabilities).		

		//	put	your	setup	code	here,	to	run	once:	

		Serial.begin(9600);		

		Wire.begin();	

		delay(15);	

		setup_wifi();	

		client.setServer(mqtt_server,	1883);	

}	

//---	

void	reconnect()	{	

				//	Loop	until	we're	reconnected	

				while	(!client.connected())	{	

								Serial.print("Attempting	MQTT	connection...");	

								//	Attempt	to	connect	

								if	(client.connect("TestMQTT"))	{	//*	See	//NOTE	below	

												Serial.println("connected");	

								}	else	{	

												Serial.print("failed,	rc=");	

												Serial.print(client.state());	

	

	 33	

												Serial.println("	try	again	in	5	seconds");	

												//	Wait	5	seconds	before	retrying	

												delay(5000);	

								}	

				}	

}	

//---	

//NOTE:	if	a	user/password	is	used	for	MQTT	connection	use:	

//if(client.connect("TestMQTT",	mqtt_user,	mqtt_password))	{			

void	pubMQTT(String	topic,float	topic_val){	

				Serial.print("Newest	topic	"	+	topic	+	"	value:");	

				Serial.println(String(topic_val).c_str());	

				client.publish(topic.c_str(),	String(topic_val).c_str(),	true);	

}	

long	lastMsg	=	0;		

void	loop()	{	

		if	(!client.connected())	{	

				reconnect();	

		}	

		client.loop();	

		//2	seconds	minimum	between	Read	Sensors	and	Publish	

		long	now	=	millis();	

		if	(now	-	lastMsg	>	2000)	{	

						lastMsg	=	now;	

				

						(Publish	Values	to	MQTT	broker)	

								//	Phase	1	

						pubMQTT("Phase	",	1);		

	

	 34	

						double	voltage	=	voltage_read(ADDRESS1);		

						delay(500);		

						double	current	=	current_read(ADDRESS1);		

						delay(500);		

						double	powerFactor	=	powerFactor_read(ADDRESS1);		

						delay(500);		

						pubMQTT(topic1,voltage);	

						pubMQTT(topic2,	current);	

						pubMQTT(topic3,	actPower);		

	

						//	Phase	2	

						pubMQTT("Phase	",	2);		

						voltage	=	voltage_read(ADDRESS2);		

						delay(500);		

						current	=	current_read(ADDRESS2);		

						delay(500);		

						actPower	=	powerFactor_read(ADDRESS2);		

						delay(500);		

						pubMQTT(topic1,voltage);	

						pubMQTT(topic2,	current);	

						pubMQTT(topic3,	actPower);	

	

						//	Phase	3	

						pubMQTT("Phase	",	3);		

						voltage	=	voltage_read(ADDRESS3);		

						delay(500);		

						current	=	current_read(ADDRESS3);		

						delay(500);		

	

	 35	

						actPower	=	powerFactor_read(ADDRESS3);		

						delay(500);		

						pubMQTT(topic1,voltage);	

						pubMQTT(topic2,	current);	

						pubMQTT(topic3,	actPower);	

		}	

}	

	

	

	

	

	 36	

Relevant Spec Sheets: 	

● Spec Sheet for the MCP39F521: http://bit.ly/24qIhC7
● User’s Guide for the MCP39F521: http://bit.ly/1WwpySU
● Spec Sheet for the ESP12: http://bit.ly/23ffuhf

	

Most Relevant Source: The brains of the Electric Brain System team. 	

	

	

	

